Подключение трехфазного двигателя в однофазную цепь – вопрос актуальный. Такое включение пригодится при обеспечении работы оборудования в домашних условиях. Например, циркулярной пилы, сверлильного станка или зернодробилки.

Трехфазный двигатель в однофазной сети: частотный преобразователь

Самым прогрессивным методом такого включения является частотный преобразователь. С его помощью получают наиболее значимые факторы в процессе эксплуатации асинхронного электродвигателя – плавность пуска и мягкость торможения. Это исключает многократное превышение номинального пускового напряжения, чем увеличивает долговечность двигателя. Кроме того, частотный преобразователь практически в два раза снижает энергопотребление. Принцип его работы основан на двукратномном преобразовании напряжения. Но стоимость инвертора определено, велика, поэтому немного отпугивает.

Пошаговая инструкция сборки частотного преобразователя своими руками

В целях экономии можно собрать частотный преобразователь своими руками. Представляем пошаговую инструкцию сборки инвертора в домашних условиях.

Шаг № 1. Схема инвертора

Начинают сборку любого электронного прибора нужно со схемы. На просторах интернета таких схем большое множество. Поэтому прежде чем начать работу, нелишним будет покопаться и выяснить рабочая выбранная модель или нет. В нашем случае это многократно тестированная и использованная схема.

Выглядит она так. Схема рассчитана она для двигателей мощностью до 4 кВт, в процессе эксплуатации работает защита от перегрузки, нагрева и кз. Случился неприятный момент, короткое замыкание в брно двигателя, но защита отработала четко, ни двигатель, ни частотник не сгорели.

Шаг № 2. Корпус преобразователя

В качестве корпуса был выбран корпус от системного блока компьютера. Можно применить что-нибудь компактнее, но в этот момент именно такой блок-корпус показался приемлемым. Не нужно тратиться на приобретение или изготовление чего-то нового.

Шаг № 3. Блок питания

Можно изготовить нехитрый блок питания своими руками по предлагаемой схеме.

Но в нашем случае он был приобретен в готовом исполнении на 24 В.

Шаг № 4. Установка силовой части

диодный мост с обратными диодами G4PH50UD вынесен, применены полевые транзисторы IGBT.

Шаг № 5. Устройство охлаждения

А также смонтированы кулеры охлаждения для предотвращения нагрева радиатора.

При тестировании схемы на двигателе 4кВт, возможно, появится нагрев. Проверка преобразователя на электрических машинах до 3,0 кВт нагрева не выявила.

Поэтому чтобы не набивалась пыль во время работы кулеров, преобразователь планируется использовать в мастерской, установлено термореле, которое включит охлаждение только в случае перегрева радиатора до 36º С и более. Причем после падения температуры до заданных показателей, кулера опять отключатся.

Шаг № 6. Установка шунта

Устанавливаем шунт для 4кВт, как показано на фото.

Шаг № 7. Монтаж основной платы преобразователя, установка и прошивка контролера

Внизу корпуса смонтирована непосредственно плата частотника,

она идет на микроконтроллер pic 16F628А.

Шаг № 8. Модернизация преобразователя для регулировки частоты вращения двигателя

Такой конструкции частотного преобразователя достаточно для плавного пуска трехфазного электродвигателя и его эксплуатации в однофазной сети.

Если будет стоять задача регулировки оборотов двигателя, тогда его необходимо слегка усложнить, установив другой микроконтролер pic 16F648A,

кварц 20МГц,

два конденсатора для его обвязки 30PF,

и ручку для регулировки оборотов двигателя.

Стоить отметить, что стоимость деталей для частотного преобразователя выливается примерно в сумму 2 700 гривен или 6 700 рублей, если же приобрести прибор с такими же параметрами, но заводского изготовления, цена будет равняться порядка 7 000 гривен или 17 400 рублей.

Главное преимущество наличия частотного преобразователя в возможности подключения всех трехфазных электродвигателей до 4кВт, имеющихся в хозяйстве.

Трехфазный двигатель в однофазной сети: конденсаторы

Другим наиболее приемлемым способом подключения трехфазного электродвигателя в однофазную сеть являются конденсаторы. Если у вас нет средств на приобретение дорогостоящего оборудования или вопрос упирается в единоразовое подключение одного электродвигателя, то целесообразно применить конденсаторы. Это совершенно просто сделать, воспользовавшись пошаговой инструкцией из нашей статьи.

Пошаговая инструкция применения конденсаторов для подключения асинхронного двигателя в однофазную сеть

Шаг № 1. Расчет необходимой емкости конденсаторов

Начинать подключение электродвигателя нужно с подбора емкости конденсаторов. Рабочая емкость конденсаторов при соединении треугольником равняется отношению произведения величины силы тока и скалярного коэффициента 4 800 к номинальному напряжению.

В случае соединения звездой скалярный показатель равен 2 800.

Величина силы тока определяется как отношение мощности электродвигателя к произведению скалярного коэффициента 1,73, номинального напряжения U, коэффициента мощности cosφ и кпд η.

I=P/1,73Uηcosφ

Данные для вычисления силы тока указаны на шильдике каждого конкретного электродвигателя.

Емкость пускового конденсатора принимается в два — три раза большей рабочего конденсатора.

Шаг № 2. Схема подключения

Схема подключения трехфазных двигателей а однофазную сеть выглядит так.

Шаг№ 3. Соединение выводов

Сначала определяем количество выводов в брно электрической машины. Для соединения треугольником необходимо, чтобы их было шесть. Если выводов всего три. Нужно снять крышки электродвигателя и найти концы обмоток. После чего припаять к ним провода и вывести в брно. Воспользовавшись схемой соединить обмотки треугольником.

Шаг № 4. Применение пускового конденсатора

Если число оборотов электродвигателя превышает 1500 об/мин, то для пуска следует применить отдельный специальный конденсатор.

Простейшее включение в сеть пускового конденсатора производится при помощи нефиксирующейся кнопки. При автоматизации процесса применяют реле тока.

Электродвигатели мощностью до 0,5 кВт можно включать с помощью реле из холодильника, предварительно заменив контактную пластину и отключив защиту от нагрева. Чтобы избежать залипания ее можно сделать из графитовой щетки. Для двигателей от 0,5 до 1,1 кВт обычно перематывают реле проволокой большего диаметра, а если мощность двигателя выше указанной величины,

то можно сделать реле тока самостоятельно.

Шаг № 5. Соединение батареи конденсаторов необходимой емкости

Для двигателя мощностью 1,1 кВт достаточно конденсатора емкостью 80 мкф. В нашем случае применяем 4 штуки по 20 мкф. Соединям их в одно целое, спаяв перемычки. Они будут выполнять функцию запуска и дальнейшей работы.

Шаг № 6. Подключение питания

Подключаем питание, см фото. Обязательно следует тщательно подготовить конца проводов. Тогда при возникновении проблем, некачественное соединение, как причину, можно будет сразу исключить.

Шаг № 7. Подключение батареи конденсаторов

Подключаем непосредственно конденсаторы Двигатель готов к работе.

Еще одним способом подключения является включение трехфазного электродвигателя в однофазную сеть без конденсаторов, при помощи двустронних ключей коммутации, активирование которых выполняется в определенно конкретный отрезок времени.

Трехфазный двигатель в однофазной сети без конденсаторов : схемы подключения

Принципиальная схема устройства

Столкнувшись с этой схемой на просторах интернета, человек очень обрадуется. Кстати, это решение впервые было опубликовано в далеком 1967 году.

Расходы небольшие, почему бы не попробовать и не создать прибор, обеспечивающий беспроблемное подключение асинхронного трехфазного двигателя в однофазную сеть. Но прежде чем вооружиться паяльником следует прочесть отзывы и комментарии.

Эта схема теоретически имеет право на жизнь, но на практике, в основном, не работает. Возможно, нужна более тщательная настройка. Сказать однозначно или дать гарантии нельзя. Большинство форумчан считает сборку такого прибора напрасной тратой времени, хотя некоторые утверждают обратное.

Из этого спора можно сделать следующие выводы:

  • схема может работать на двигателе до 2,2 кВт и частотой вращения 1 500 об/мин;
  • большая потеря мощности на валу электродвигателя;
  • схема требует тщательной опции задающей цепи C1R7, которую нужно подстраивать таким образом, чтобы напряжение на конденсаторе открывало и закрывало ключ, по всей вероятности транзисторы ключа попали внерабочий режим, для этого необходимо заменить резистор R6 или один из R3R4;
  • более надежными способами подключения трехфазного двигателя в однофазную сеть являются конденсаторы или частотный преобразователь.

Схема была осовременнена в 1999 году. Для запуска трехфазного двигателя в однофазной сети без конденсаторов были отлажены две простейшие схемы.

Обе опробованы на электродвигателях мощностями от 0.5 до 2.2 кВт и показали довольно таки хорошие результаты (время запуска не многим больше, чем в трехфазном режиме).

В целях финансовой экономии можно подключить трехфазный двигатель по работающим современным схемам.

В данных схемах используются симисторы, которые управляются импульсами разной полярности, а также симметричный динистор, который образует управляющие сигналы в поток каждого полупериода питающего напряжения.

Схема №1 для низкооборотистых электродвигателей

Она предназначена для запуска электродвигателя с номинальной частотой оборотов, которая равна или меньше 1500 оборотов в минуту. Обмотки данных двигателей соединены в треугольник. Фазосдвигающим устройством в данной схеме является специальная цепочка.

Изменяя сопротивление, получаем на конденсаторе напряжение, которое сдвинуто относительно основного питающего напряжения на определенный угол.

Ключевым элементом в данной схеме является симметричный динистор. В момент достижения напряжения на конденсаторе уровня, при котором динистор совершит переключение, подключится заряженный конденсатор к выводу управления симистора.

В этом момент активируется силовой двунаправленный ключ.


Схема № 2 для высокооборотистых электрических машин

Она нужна для запуска электродвигателей с номинальной частотой вращения 3000 оборотов в минуту, а также для двигателей, которые работают на механизмы с немалым моментом сопротивления при запуске.

В данных случаях необходим больший пусковой момент. Именно поэтому была заменена схема соединения обмоток двигателя, которая создает максимальный пусковой момент. В данной схеме конденсаторы, сдвигающие фазы, заменены парой электронных ключей.

Первый ключ включен в систему последовательно с обмоткой фазы и образует в ней индуктивный сдвиг тока. Второй - присоединен параллельно обмотке фазы, и образует в ней опережающий емкостной сдвиг тока.

При данной схеме учитываются обмотки электродвигателей, которые смещены в пространстве на 120 электрических градусов относительно друг друга.

Наладка заключается в определении оптимального угла сдвига тока в фазных обмотках, при котором производится надежный запуск двигателя.

Данное действие можно произвести без использования специальных приборов.

Выполнение данного процесса производится следующим образом. Подача напряжения на двигатель производится пускателем ручного нажимного типа ПНВС-10, через центральный полюс которого присоединяется фазосдвигающая цепочка.

Контакты среднего полюса находятся в замыкании только лишь при зажатой кнопке пуска.

Нажав данную кнопку, путем вращения двигателя подстроечного сопротивления, подбирают нужный пусковой момент. Также поступают и при наладке других схем.

Пример эксплуатации асинхронного электродвигателя 380 В в бытовой сети 220 В без конденсаторов

Видео подключения трехфазного двигателя в однофазную сеть без конденсаторов: без потери мощности

Подобрано для вас:

В этой статье мы рассмотрим подключение 3-х фазного асинхронного двигателя в однофазную сеть 220 В .
Так как не в каждом гараже есть 3 фазы, что бы подключить асинхронный двигатель, но необходимость в этом зачастую происходит.

Немного поговорим о теории и принципе работы АД:

Асинхронный двигатель состоит из статора и ротора.Обмотка ротора короткозамкнутая,а обмотка статора представляет собой 3-х фазную обмотку проводники, в которой пофазно расположены в окружности статора со сдвигом в 120 градусов.

При включении двигателя в 3-х фазную сеть, по обмоткам (полюсам) статора начинает проходить ток в разные моменты, поочередно, сначала в фазе «А «, потом в фазе «В «, после в фазе «С «,этим он создает вращающиеся магнитное поле, которое вращает ротор.

При включение его в однофазную сеть, вращающий момент, будет создаваться только в одной обмотке, этого не хватит, для того что бы сдвинуть и вращать ротор. Для того что бы сдвинуть ток фазы полюса, используются фазосдвигающие конденсаторы.

Конденсаторы можно применять любых типов, кроме электролитических. В основном применяются бумажные конденсаторы марки МБГО, напряжение которых нужно выбирать не мене 20 — 30 В больше напряжения сети. В нашем случае берем конденсатор напряжением не менее 250 В.

О его емкости поговорим немного позже.

конденсаторы марки МБГО

Итак, что бы его подключить нужно знать характеристики АД, которые выбиты в его паспорте на корпусе:

По тех паспорту мы видим что этот двигатель имеет мощность 0,75 кВт,номинальные обороты 910 об./мин. с возможностью работы в 2 х режимах подключения (треугольник) и Y (звезда). Для работы двигателя в схеме включения (треугольник), номинальное напряжения 220 В номинальный ток 3,96 А , для звезды соответственно 380 В , 2,29 А .

Теперь адаптируем его под наше напряжение 220 В, то есть соединяем его в нашем случае в (тругольник), как показано на картинке (б ) , на картинке (а ) показано схема подключения в звезду, снизу показано расположение перемычек для данного подключения:

Теперь нужно выбрать емкость конденсатора, для этого возвращаемся к техническим параметрам эл.двигателя берем оттуда Iн и Uн, в нашем случае это 3,96 А и 220 В подставляем его в формулу:

C р = 2780 (I н / U н) = 2780 (3,96/220)=2780 0,018= 50,04 мкФ

(если не хватает емкости одного конденсатора, то соединяем паралельно несколько конденсаторов, при паралельном подключении емкость конденсатора складывается)

Теперь подключаем наш конденсатор согласно рисунку 1 .

Чтобы поменять направление вращения ротора, меняем точку подключения конденсатора.

Асинхронные трехфазные двигатели, а именно их, из-за широкого распространения, часто приходится использовать, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием в 120 электрических градусов уложены проводники обмоток, начала и концы которых (C1, C2, C3, C4, C5 и C6) выведены в распределительную коробку. Обмотки могут быть соединены по схеме "звезда" (концы обмоток соединены между собой, к их началам подводится питающее напряжение) или "треугольник" (концы одной обмотки соединены с началом другой).

В распределительной коробке контакты обычно сдвинуты - напротив С1 не С4, а С6, напротив С2 - С4.

При подключении трехфазного двигателя к трехфазной сети по его обмоткам в разный момент времени по очереди начинает идти ток, создающий вращающееся магнитное поле, которое взаимодействует с ротором, заставляя его вращаться. При включении двигателя в однофазную сеть, вращающий момент, способный сдвинуть ротор, не создается.

Среди разных способов подключения трехфазных электродвигателей в однофазную сеть наиболее простой - подключение третьего контакта через фазосдвигающий конденсатор.

Частота вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его включении в трехфазную сеть. К сожалению, этого нельзя сказать о мощности, потери которой достигают значительных величин. Точные значения потери мощности зависят от схемы подключения, условий работы двигателя, величины емкости фазосдвигающего конденсатора. Ориентировочно, трехфазный двигатель в однофазной сети теряет около 30-50% своей мощности.

Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно - если не считать потери мощности. В основном для работы в однофазных сетях используются асинхронные двигатели с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).

Асинхронные трехфазные двигатели рассчитаны на два номинальных напряжения сети - 220/127, 380/220 и т.д. Наиболее распространены электродвигатели с рабочим напряжением обмоток 380/220В (380В - для "звезды", 220 - для "треугольника). Большее напряжение для "звезды", меньшее - для "треугольника". В паспорте и на табличке двигателей кроме прочих параметров указывается рабочее напряжение обмоток, схема их соединения и возможность ее изменения.

Обозначение на табличке А говорит о том, что обмотки двигателя могут быть подключены как "треугольником" (на 220В), так и "звездой" (на 380В). При включении трехфазного двигателя в однофазную сеть желательно использовать схему "треугольник", поскольку в этом случае двигатель потеряет меньше мощности, чем при подключении "звездой".

Табличка Б информирует, что обмотки двигателя подсоединены по схеме "звезда", и в распределительной коробке не предусмотрена возможность переключить их на "треугольник" (имеется всего лишь три вывода). В этом случае остается или смириться с большой потерей мощности, подключив двигатель по схеме "звезда", или, проникнув в обмотку электродвигателя, попытаться вывести недостающие концы, чтобы соединить обмотки по схеме "треугольник".

Если рабочее напряжение двигателя составляет 220/127В, то к однофазной сети на 220В двигатель можно подключить только по схеме "звезда". При подключении 220В по схеме "треугольник", двигатель сгорит.

Начала и концы обмоток (различные варианты)

Пожалуй, основная сложность подключения трехфазного двигателя в однофазную сеть заключается в том, чтобы разобраться в проводах, выходящих в распределительную коробку или, при отсутствии последней, просто выведенных наружу двигателя.

Самый простой случай, когда в имеющемся двигателе на 380/220В обмотки уже подключены по схеме "треугольник". В этом случае нужно просто подсоединить токоподводящие провода и рабочий и пусковой конденсаторы к клеммам двигателя согласно схеме подключения.

Если в двигателе обмотки соединены "звездой", и имеется возможность изменить ее на "треугольник", то этот случай тоже нельзя отнести к сложным. Нужно просто изменить схему подключения обмоток на "треугольник", использовав для этого перемычки.

Определение начал и концов обмоток . Дело обстоит сложнее, если в распределительную коробку выведено 6 проводов без указания об их принадлежности к определенной обмотке и обозначения начал и концов. В этом случае дело сводится к решению двух задач (Но прежде чем этим заниматься, нужно попробовать найти в Интернете какую-либо документацию к электродвигателю. В ней может быть описано к чему относятся провода разных цветов.):

  • определению пар проводов, относящихся к одной обмотке;
  • нахождению начала и конца обмоток.

Первая задача решается "прозваниванием" всех проводов тестером (замером сопротивления). Если прибора нет, можно решить её с помощью лампочки от фонарика и батареек, подсоединяя имеющиеся провода в цепь последовательно с лампочкой. Если последняя загорается, значит, два проверяемых конца относятся к одной обмотке. Таким способом определяются три пары проводов (A, B и C на рисунке ниже) относящихся к трем обмоткам.

Вторая задача (определение начала и конца обмоток) несколько сложнее и требует наличия батарейки и стрелочного вольтметра. Цифровой не годится из-за инертности. Порядок определения концов и начал обмоток показан на схемах 1 и 2.

К концам одной обмотки (например, A ) подключается батарейка, к концам другой (например, B ) - стрелочный вольтметр. Теперь, если разорвать контакт проводов А с батарейкой, стрелка вольтметра качнется в ту или иную сторону. Затем необходимо подключить вольтметр к обмотке С и проделать ту же операцию с разрывом контактов батарейки. При необходимости меняя полярность обмотки С (меняя местами концы С1 и С2) нужно добиться того, чтобы стрелка вольтметра качнулась в ту же сторону, как и в случае с обмоткой В . Таким же образом проверяется и обмотка А - с батарейкой, подсоединенной к обмотке C или B .

В итоге всех манипуляций должно получиться следующее: при разрыве контактов батарейки с любой из обмоток на 2-х других должен появляться электрический потенциал одной и той же полярности (стрелка прибора качается в одну сторону). Теперь остается пометить выводы одного пучка как начала (А1, В1, С1), а выводы другого - как концы (А2, В2, С2) и соединить их по необходимой схеме - "треугольник" или "звезда" (если напряжение двигателя 220/127В).

Извлечение недостающих концов . Пожалуй, самый сложный случай - когда двигатель имеет соединение обмоток по схеме "звезда", и нет возможности переключить ее на "треугольник" (в распределительную коробку выведено всего лишь три провода - начала обмоток С1, С2, С3) (см. рисунок ниже). В этом случае для подключения двигателя по схеме "треугольник" необходимо вывести в коробку недостающие концы обмоток С4, С5, С6.

Чтобы сделать это, обеспечивают доступ к обмотке двигателя, сняв крышку и, возможно, удалив ротор. Отыскивают и освобождают от изоляции место спайки. Разъединяют концы и припаивают к ним гибкие многожильные изолированные провода. Все соединения надежно изолируют, крепят провода прочной нитью к обмотке и выводят концы на клеммный щиток электродвигателя. Определяют принадлежность концов началам обмоток и соединяют по схеме "треугольник", подсоединив начала одних обмоток к концам других (С1 к С6, С2 к С4, С3 к С5). Работа по выводу недостающих концов требует определенного навыка. Обмотки двигателя могут содержать не одну, а несколько спаек, разобраться в которых не так-то и просто. Поэтому если нет должной квалификацией, возможно, не останется ничего иного, как подключить трехфазный двигатель по схеме "звезда", смирившись со значительной потерей мощности.

Схемы подключения трехфазного двигателя в однофазную сеть

Подключение по схеме "треугольник" . В случае бытовой сети, с точки зрения получения большей выходной мощности наиболее целесообразным является однофазное подключение трехфазных двигателей по схеме "треугольник". При этом их мощность может достигать 70% от номинальной. Два контакта в распределительной коробке подсоединяются непосредственно к проводам однофазной сети (220В), а третий - через рабочий конденсатор Ср к любому из двух первых контактов или проводам сети.

Обеспечение пуска . Пуск трехфазного двигателя без нагрузки можно осуществлять и от рабочего конденсатора (подробнее ниже), но если электродвигатель имеет какую-то нагрузку, он или не запустится, или будет набирать обороты очень медленно. Тогда для быстрого пуска необходим дополнительный пусковой конденсатор Сп (расчет емкости конденсаторов описан ниже). Пусковые конденсаторы включаются только на время пуска двигателя (2-3 сек, пока обороты не достигнут примерно 70% от номинальных), затем пусковой конденсатор нужно отключить и разрядить.


Подключение трехфазного электродвигателя в однофазную сеть по схеме "треугольник" с пусковым конденсатором Сп

Удобен запуск трехфазного двигателя с помощью особого выключателя, одна пара контактов которого замыкается при нажатой кнопке. При ее отпускании одни контакты размыкаются, а другие остаются включенными - пока не будет нажата кнопка "стоп".

Реверс . Направление вращения двигателя зависит от того, к какому контакту ("фазе") подсоединена третья фазная обмотка.

Направлением вращения можно управлять, подсоединив последнюю, через конденсатор, к двухпозиционному тумблеру, соединенному двумя своими контактами с первой и второй обмотками. В зависимости от положения тумблера двигатель будет вращаться в одну или другую сторону.

На рисунке ниже представлена схема с пусковым и рабочим конденсатором и кнопкой реверса, позволяющая осуществлять удобное управление трехфазным двигателем.

Подключение по схеме "звезда" . Подобная схема подключения трехфазного двигателя в сеть с напряжением 220В используется для электродвигателей, у которых обмотки рассчитаны на напряжение 220/127В.

Необходимая емкость рабочих конденсаторов для работы трехфазного двигателя в однофазной сети зависит от схемы подключения обмоток двигателя и других параметров. Для соединения "звездой" емкость рассчитывается по формуле:

Для соединения "треугольником":

Где Ср - емкость рабочего конденсатора в мкФ, I - ток в А, U - напряжение сети в В. Ток рассчитывается по формуле:

I = P/(1.73 U n cosф)

Где Р - мощность электродвигателя кВт; n - КПД двигателя; cosф - коэффициент мощности, 1.73 - коэффициент, характеризующий соотношение между линейным и фазным токами. КПД и коэффициент мощности указаны в паспорте и на табличке двигателя. Обычно их значение находится в диапазоне 0,8-0,9.

На практике величину емкости рабочего конденсатора при подсоединении "треугольником" можно посчитать по упрощенной формуле C = 70 Pн, где Pн - номинальная мощность электродвигателя в кВт. Согласно этой формуле на каждые 100 Вт мощности электродвигателя необходимо около 7 мкФ емкости рабочего конденсатора.

Правильность подбора емкости конденсатора проверяется результатами эксплуатации двигателя. Если её значение оказалось больше, чем требуется при данных условиях работы, двигатель будет перегреваться. Если емкость оказалась меньше требуемой, выходная мощность электродвигателя будет слишком низкой. Имеет резон подбирать конденсатор для трехфазного двигателя, начиная с малой емкости и постепенно увеличивая её значение до оптимального. Если есть возможность, лучше подобрать емкость измерением тока в проводах подключенных к сети и к рабочему конденсатору, например токоизмерительными клещами. Значение тока должно быть наиболее близким. Замеры следует производить при том режиме, в котором двигатель будет работать.

При определении пусковой емкости исходят, прежде всего, из требований создания необходимого пускового момента. Не путать пусковую емкость с емкостью пускового конденсатора. На приведенных выше схемах, пусковая емкость равна сумме емкостей рабочего (Ср) и пускового (Сп) конденсаторов.

Если по условиям работы пуск электродвигателя происходит без нагрузки, то пусковая емкость обычно принимается равной рабочей, то есть пусковой конденсатор не нужен. В этом случае схема включения упрощается и удешевляется. Для такого упрощения и главное удешевления схемы, можно организовать возможность отключения нагрузки, например, сделав возможность быстро и удобно изменять положение двигателя для ослабления ременной передачи, или сделав для ременной передачи прижимной ролик, например, как у ременного сцепления мотоблоков.

Пуск под нагрузкой требует наличия дополнительной емкости (Сп) подключаемой на время запуска двигателя. Увеличение отключаемой емкости приводит к возрастанию пускового момента, и при некотором определенном ее значении момент достигает своего наибольшего значения. Дальнейшее увеличение емкости приводит к обратному результату: пусковой момент начинает уменьшаться.

Исходя из условия запуска двигателя под нагрузкой близкой к номинальной, пусковая емкость должна быть в 2-3 раза больше рабочей, то есть, если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора должна быть 80-160 мкФ, что даст пусковую емкость (сумма емкости рабочего и пускового конденсаторов) 160-240 мкФ. Но если двигатель имеет небольшую нагрузку при запуске, емкость пускового конденсатора может быть меньше или, как писалось выше, его вообще может не быть.

Пусковые конденсаторы работают непродолжительное время (всего несколько секунд за весь период включения). Это позволяет использовать при запуске двигателя наиболее дешевые пусковые электролитические конденсаторы, специально предназначенные для этой цели (http://www.platan.ru/cgi-bin/qweryv.pl/0w10609.html).

Отметим, что у двигателя подключенного к однофазной сети через конденсатор, работающего без нагрузки, по обмотке, питаемой через конденсатор, идет ток на 20-30% превышающий номинальный. Поэтому, если двигатель используется в недогруженном режиме, то емкость рабочего конденсатора следует уменьшить. Но тогда, если двигатель запускался без пускового конденсатора, последний может потребоваться.

Лучше использовать не один большой конденсатор, а несколько поменьше, отчасти из-за возможности подбора оптимальной емкости, подсоединяя дополнительные или отключая ненужные, последние можно использовать в качестве пусковых. Необходимое количество микрофарад набирается параллельным соединением нескольких конденсаторов, исходя из того, что суммарная емкость при параллельном соединении подсчитывается по формуле: C общ = C 1 + C 1 + ... + С n .

В качестве рабочих используются обычно металлизированные бумажные или пленочные конденсаторы (МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60). Допустимое напряжение должно не менее чем в 1,5 раза превышать напряжение сети.

При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.

Как известно, для запуска трехфазного электродвигателя (ЭД) с короткозамкнутым ротором от однофазной сети наиболее часто в качестве фазосдвигающего элемента применяют конденсатор. При этом емкость пускового конденсатора должна быть в несколько раз больше емкости рабочей конденсатора. Для ЭД чаще всего применяемых в домашнем хозяйства (0,5...3 кВт), стоимость пусковых конденсаторов соизмерима со стоимость к электродвигателя. Поэтому желательно избежать применения дорогостоящих пусковых конденсаторов, работающих лишь кратковременно. В тожe время применение рабочих, постоянно включенных фазосдвигающих конденсоторов можно считать целесообразным, так как они позволяют загрузить двигатель на75...85% его мощности при 3-фазном включении (безконденсаторов его мощность снижается примерно на 50%).

Вращающий момент, вполне достаточный для запуска указанных ЭД от однофазной сети 220 В/50 Гц, можно получить за счет сдвига токов по фазе в фазных обмотках ЭД, применив для этого двунаправленные электронные ключи, включение которых осуществляется в определенное время.

Исходя из этого, для пуска 3-фазных ЭД от однофазной сети автором были разработаны и отлажены две простые схемы. Обе схемы опробованы на ЭД мощностью 0,5...2,2 кВт и показали очень хорошие результаты (время пуска не намного больше, чем в трехфазном режиме). В схемах применяются симисторы, управляемые импульсами разной полярности, и симметричный динистор, который формирует управляющие сигналы в течение каждого полупериода питающего напряжения.

Первая схема (рис.1) предназначена для пуска ЭД с номинальной частотой вращения, равной или меньше 1500 об/мин, обмотки которых соединены в треугольник. За основу этой схемы была взята схема , которая упрощена до предела. В этой схеме электронный ключ (симистор VS1) обеспечивает сдвиг тока в обмотке «С» на некоторый угол (50...70°), что обеспечивает достаточный вращающий момент.

Фазосдвигающим устройством является RC-цепочка. Изменяя сопротивление R2, получают на конденсаторе С напряжение, сдвинутое относительно питающего напряжения на некоторый угол. В качестве ключевого элемента в схеме применен симметричный динистор VS2. В момент, когда напряжение на конденсаторе достигнет напряжения переключения динистора, он подключит заряженный конденсатор к управляющему выводу симистора VS1 i включит этот двунаправленный силовой ключ.

Вторая схема (рис.2) предназначена для пускс ЭД с номинальной частотой вращения равной 3000 об/мин, а также для электродвигателей, работающих на механизмы с большим моментом сопротивле ния при пуске. В этих случаях требуется значительно больший пусковой момент. Поэтому была применена схема соединения обмоток ЭД «разомкнутая звезда (, рис. 14,в), которая обеспечивает максимальный пусковой момент. В указанной схеме фазосдвигающие конденсаторы заменены двумя электронными ключами Один ключ включен последовательно с обмоткой фазы «А» и создает в ней «индуктивный» (отстающий)


сдвиг тока, второй - включен параллельно обмотке фазы «В» и создает в ней «емкостной» (опережающий) сдвиг тока. Здесь учитывается то, что сами обмотки ЭД смещены в пространстве на 120 электрических градусов одна относительно другой.

Наладка заключается в подборе оптимального угла сдвига токов в фазных обмотках, при котором происходит надежный запуск ЭД. Это можно сделать без применения специальных приборов. Выполняется она следующим образом.

Подача напряжения на ЭД осуществляется пускателем нажимного «ручного» типа ПНВС-10, через средний полюс которого подключается фазосдвигающая цепочка. Контакты среднего полюса замкнуты только при нажатой кнопке «Пуск».

Нажав кнопку «Пуск», путем вращения движка подстроечного сопротивления R2 подбирают необходимый пусковой момент. Так поступают при наладке схемы, показанной на рис.2.

При наладке схемы рис.1 из-за прохождения больших пусковых токов некоторое время (до разворота) ЭД сильно гудит и вибрирует. В этом случае лучше изменять величину R2 ступенями при снятом напряжении, а затем, путем кратковременной подачи напряжения, проверять, как происходит запуск ЭД. Если при этом угол сдвига напряжения далек от оптимального, то ЭД гудит и вибрирует очень сильно. По мере приближения к оптимальному углу двигатель «пытается» вращаться в ту или другую сторону, а при оптимальном запускается достаточно хорошо.

Автор производил отладку схемы, показанной на рис.1, на ЭД 0,75 кВт 1500 об/мин и 2,2 кВт 1500 об/мин, а схемы, показанной на рис.2, на ЭД 2,2 кВт 3000 об/мин.

При этом опытным путем установлено, что подобрать значения R и С фазовращающей цепочки, соответствующие оптимальному углу, можно предварительно. Для этого нужно последовательно с ключом (симистором) соединить лампу накаливания 60 Вт и включить их в сеть ~220 В. Изменяя величину R, надо установить напряжение на лампе 1 70 В (для схемы рис.1 ) и 1 00 В (для схемы рис.2). Эти напряжения замерялись стрелочным прибором магнитоэлектрической системы, хотя форма напряжения на нагрузке не синусоидальная.

Необходимо отметить, что добиться оптимальных углов сдвига токов можно при различных сочетаниях значений R и С фазосдвигающей цепочки, т.е. изменив номинал емкости конденсатора, придется подобрать и соответствующее ему значение сопротивления.

Детали

Эксперименты проводились с симисторами ТС-2-10 и ТС-2-25 без радиаторов. В этой схеме они работали очень хорошо. Можно применить и другие симисторы с двухполярным управлением на соответствующие рабочие токи и класса напряжения не ниже 7. При использовании импортных симисторов в пластмассовом корпусе их следует установить на радиаторы.

Симметричный динистор DB3 можно заменить отечественным КР1125. У него немного меньше напряжение переключения. Возможно, это и лучше, но этот динистор очень сложно найти в продаже.

Конденсаторы С любые неполярные, рассчитанные на рабочее напряжение не менее 50 В (лучше - 100 В). Можно применить также два полярных конденсатора, включенных последовательно-встречно (в схеме рис.2 их номинал должен быть 3,3 мкФ каждый).

Внешний вид электропривода измельчителя травы с описанной схемой запуска и ЭД 2,2 кВт 3000 об/мин показан на фото 1.

В. В. Бурлоко, г. Мориуполь

Литература

1. // Сигнал. - 1999. - №4.

2. С.П. Фурсов Использование трехфазных

электродвигателей в быту. - Кишинев: Картя

молдовенскэ, 1976.

Состоит из двух основных частей - статора и ротора. Статор - неподвижная часть, ротор - вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.

Статор асинхронного двигателя

Ротор асинхронного двигателя

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Корпус и сердечник статора асинхронного электродвигателя

Конструкция шихтованного сердечника асинхронного двигателя

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Запустить

Остановить

Вращающееся магнитное поле асинхронного электродвигателя

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f 1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

,

  • где n 1 – частота вращения магнитного поля статора, об/мин,
  • f 1 – частота переменного тока, Гц,
  • p – число пар полюсов

Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

Запустить

Остановить

Магнитное поле прямого проводника с постоянным током

Магнитное поле создаваемое обмоткой

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

Магнитное поле создаваемое трехфазным током в разный момент времени Ток протекающий в витках электродвигателя (сдвиг 60°)

Запустить

Остановить

Действие вращающегося магнитного поля на замкнутый виток

Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно будет действовать сила, в результате чего контур начнет вращаться.


Влияние вращающегося магнитного поля на замкнутый проводник с током

Короткозамкнутый ротор асинхронного двигателя

По этому принципу также работает . Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.

Короткозамкнутый ротор "беличья клетка" наиболее широко используемый в асинхронных электродвигателях (показан без вала и сердечника)

Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться. На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля. Изменение тока в стержнях будет изменяться со временем.

Запустить

Остановить

Вращающееся магнитное поле пронизывающее короткозамкнутый ротор

Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

Скольжение асинхронного двигателя. Скорость вращения ротора

Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n 2 меньше синхронной частоты вращения магнитного поля статора n 1 .

Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n 2

,

  • где s – скольжение асинхронного электродвигателя,
  • n 1 – частота вращения магнитного поля статора, об/мин,
  • n 2 – частота вращения ротора, об/мин,

Рассмотрим случай когда частота вращения ротора будет совпадать с частотой вращения магнитного поля статора. В таком случае относительное магнитное поле ротора будет постоянным, таким образом в стержнях ротора не будет создаваться ЭДС, а следовательно и ток. Это значит что сила действующая на ротор будет равна нулю. Таким образом ротор будет замедляться. После чего на стержни ротора опять будет действовать переменное магнитное поле, таким образом будет расти индуцируемый ток и сила. В реальности же ротор никогда не достигнет скорости вращения магнитного поля статора. Ротор будет вращаться с некоторой скоростью которая немного меньше синхронной скорости.

Скольжение асинхронного двигателя может изменяться в диапазоне от 0 до 1, т. е. 0-100%. Если s~0, то это соответствует режиму холостого хода, когда ротор двигателя практически не испытывает противодействующего момента; если s=1 - режиму короткого замыкания, при котором ротор двигателя неподвижен (n 2 = 0). Скольжение зависит от механической нагрузки на валу двигателя и с ее ростом увеличивается.

Скольжение, соответствующее номинальной нагрузке двигателя, называется номинальным скольжением. Для асинхронных двигателей малой и средней мощности номинальное скольжение изменяется в пределах от 8% до 2%.

Преобразование энергии


Полеориентированное управления асинхронным электродвигателем по датчику положения ротора

Полеориентированное управление позволяет плавно и точно управлять параметрами движения (скоростью и моментом), но при этом для его реализации требуется информация о направлениии вектора потокосцепления ротора двигателя.

    По способу получения информации о положении потокосцепления ротора электродвигателя выделяют:
  • полеориентированное управление по датчику;
  • полеориентированное управление без датчика: положение потокосцепления ротора вычисляется математически на основе той информации, которая имеется в частотном преобразователе (напряжение питания, напряжения и токи статора, сопротивление и индуктивность обмоток статора и ротора, количество пар полюсов двигателя).

Полеориентированное управления асинхронным электродвигателем без датчика положения ротора

Для повышения КПД и снижения износа щеток некоторые АДФР содержат специальное устройство (короткозамкнутый механизм), которое после запуска поднимает щетки и замыкает кольца.

При реостатном пуске достигаются благоприятные пусковые характеристики, так как высокие значения моментов достигаются при невысоких значениях пусковых токов. В настоящее время АДФР заменяются комбинацией асинхронного электродвигателя с короткозамкнутым ротором и частотным преобразователем.